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Abstract. The large observation footprint of low-frequency
satellite microwave emissions complicates the interpretation
of near-surface soil moisture retrievals. While the effect of
sub-footprint lateral heterogeneity is relatively limited under
unsaturated conditions, open water bodies (if not accounted
for) cause a strong positive bias in the satellite-derived soil
moisture retrieval. This bias is generally assumed static and
associated with large, continental lakes and coastal areas.
Temporal changes in the extent of smaller water bodies as
small as a few percent of the sensor footprint size, however,
can cause significant and dynamic biases. We analysed the
influence of such small open water bodies on near-surface
soil moisture products derived from actual (non-synthetic)
data from the Advanced Microwave Scanning Radiometer
for the Earth Observing System (AMSR-E) for three areas
in Oklahoma, USA. Differences between on-ground observa-
tions, model estimates and AMSR-E retrievals were related
to dynamic estimates of open water fraction, one retrieved
from a global daily record based on higher frequency AMSR-
E data, a second derived from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) and a third through inver-
sion of the radiative transfer model, used to retrieve soil
moisture. The comparison demonstrates the presence of rel-
atively small areas (<0.05) of open water in or near the sen-
sor footprint, possibly in combination with increased, below-
critical vegetation density conditions (optical density<0.8),
which contribute to seasonally varying biases in excess of
0.2 (m3 m−3) soil water content. These errors need to be ad-
dressed, either through elimination or accurate characterisa-
tion, if the soil moisture retrievals are to be used effectively
in a data assimilation scheme.

1 Introduction

Near-surface soil moisture derived from remotely sensed
low-frequency microwave emissions has the ability to
improve hydrological and meteorological modelling (e.g.
Koster et al., 2004; Scipal et al., 2005; Crow, 2007; Brocca
et al., 2011). For example, the Land Parameter Retrieval
Model (LPRM, Owe et al., 2008) , a radiative transfer-based
model, has demonstrated significant potential for providing
estimates of land surface parameters, such as (relative) near-
surface moisture, land surface temperature (LST) and vege-
tation optical depth (VOD), independent of in situ observa-
tions. Satellite retrievals of these parameters may be com-
bined with simulated and observed data in an assimilation
scheme in order to generate the best possible data fields (e.g.
Walker and Houser, 2001; Reichle et al., 2007; Scipal et al.,
2008a). These data may then be used to initialise numerical
weather predictions or land surface models, drive continuous
atmospheric forcing correction or, in case of systematic error,
assist in model structure development/improvement (Drusch,
2007; Brocca et al., 2010; Van Dijk and Renzullo, 2011).
Key to such efforts is the error characterisation of the as-
similation variable, in the particular case discussed here, the
LPRM-derived soil moisture. Several studies have reported
on this issue, traditionally using in situ validation for spe-
cific regions (e.g. De Jeu and Owe, 2003; Draper et al., 2009)
and, more recently, employing triple collocation techniques
to assess the relative error of multiple global soil moisture
data sets by means of reference (Scipal et al., 2008b; Dorigo
et al., 2010). Recently, an analytical solution based on error
propagation in the partial derivatives of the radiative transfer
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function found, conforming to theory, increasing soil mois-
ture retrieval error at higher VOD (Parinussa et al., 2011).

Apart from dense vegetation, conditions under which soil
moisture cannot be accurately retrieved from passive mi-
crowave sensors include precipitating clouds, snow cover,
frozen soil and (inland) surface water (e.g. Njoku et al., 2003;
Pellarin et al., 2003; Gao et al., 2006; Owe et al., 2008). Typ-
ically, quality control masks are provided to screen data af-
fected by these conditions. While most of these masks are
dynamic and can be derived from ancillary data, the mask
for open water is generally static and considers coastal areas
and large continental lakes only. Due to the high dielectric
constant of water, however, even a small sub-pixel fraction
of open water may result in a non-negligible soil moisture
overestimation (e.g. Davenport et al., 2008; Loew, 2008).

The LPRM screens data for snow and frozen surface con-
ditions to flag those pixels where the model’s LST is esti-
mated to be at or below 273 K (Owe et al., 2008). Further, a
mask is applied to remove those data affected by dense vege-
tation (VOD> 0.8), or where convergence between modelled
and observed brightness temperature is considered insuffi-
cient (>0.25 K) (De Jeu et al., 2008). Additionally, in line
with other global-scale coarse soil moisture data sets based
on space-based microwave observations, a static mask is used
to delineate coastal areas and (large) permanent inland lakes
(Njoku et al., 2003; Scipal et al., 2008a). While static water
bodies cause a constant positive bias and do not affect tem-
poral patterns, temporal changes in open water fraction are
not accounted for. Jones et al. (2009) released a global daily
record of land surface parameters retrieved from AMSR-E,
which as a first includes a dynamic open water fraction,
based on 18.7 GHz H- and V-polarized brightness temper-
atures.

In this study, the influence of open water on soil moisture
retrieval data (Owe et al., 2008; Jones and Kimball, 2010)
was investigated by comparison to on-ground station obser-
vations and land surface models (LSMs) estimates for three
areas in Oklahoma, USA (Fig. 1). Differences between the
ground or model estimates and LPRM retrievals were further
evaluated against dynamic estimates of open water fraction.

2 Data

2.1 On-ground observations

Soil moisture observations were taken from 11 stations in the
Mesonet observational grid in Oklahoma, USA (Brock et al.,
1995). The selected stations are all located within three areas
of 4× 0.25◦ lat/long grid cell size (Fig. 1), which are spa-
tially representative of the predominant types of land cover
in the area. These are both (wooded) grassland and cropland
in the East, predominantly cropland in the west , and wooded
grassland in the south-central area, as classified by the 1-
km global vegetation data set of the University of Maryland

Fig. 1. AMSR-E 0.25 degree gridded absolute soil moisture
(m3 m−3) retrievals (AMSR-E VUA abs) from the Land Parameter
Retrieval Model (Owe et al., 2008) for 2 April 2003 (upper panel)
and 28 July 2003 (lower panel). White areas indicate grid cells out-
side the sensor swath (upper panel, northwest corner) or masked-out
grid cells of non-convergence (east and southeast). The AMSR-E
grids represented by an Oklahoma (inset, next to key) Mesonet ob-
servation stations are bold outlined.

re-sampled to a predominant vegetation type 0.125◦ grid res-
olution map (http://ldas.gsfc.nasa.gov). The selection does
not include an area of evergreen forest in the southeast corner
of the state of Oklahoma, due to the relatively low density of
ground- observation stations in this part (1 per 0.5◦ grid cell).
The selected 0.25◦ grid cells all contain 1 or more stations, in
which case the observations are simply averaged. If the ob-
servations of stations within a 0.25◦ grid cell differ greatly,
both the individual stations and the average are considered
(e.g. stations PORT and HASK; Table 1). The 5-cm profile
soil moisture content is measured using Campbell Scientific
229-L devices, made available every half hour (Illston et al.,
2008). The AMSR-E overpass is at nighttime (descending or-
bit ∼01:30 local time (LT), i.e.∼08:30 Coordinated Univer-
sal Time, UTC) and at daytime (ascending orbit∼13:30 LT,
i.e.∼20:30 UTC).
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2.2 Model estimates

The land information system (LIS), developed at NASA
Goddard Space Flight Center, is an interoperable platform
capable of integrating the use of LSMs, data management
techniques and high performance computing (Kumar et al.,
2006). The community Noah land surface model (Ek et
al., 2003) and the Community Land Model version 2:0
(CLM2) (Dai et al., 2002; Zeng et al., 2002) are two of
the LSMs currently supported by LIS. Both are stand-
alone, 1-D models and are freely available: Noah from the
National Centers for Environmental Prediction (www.emc.
ncep.noaa.gov/NOAH/) and CLM2 from The National Cen-
ter for Atmospheric Research (www.cgd.ucar.edu/tss/clm/
distribution/clm2.1/), respectively.

The LSMs simulate a range of water- and energy balance
variables, of which near-surface soil moisture is of inter-
est for the present analysis. The models apply finite differ-
ence spatial discretisation methods and (semi-)implicit time-
integration schemes to numerically integrate the governing
equations of the physical processes of the soil-vegetation-
snow pack medium, including the surface energy balance
equation, the Richards equation for soil hydraulics, the diffu-
sion equation for soil heat transfer, the energy-mass balance
equation for the snow pack, and equations for the conduc-
tance of canopy transpiration.

The LSMs can be applied in either coupled or uncou-
pled mode. In this study, the models were applied in un-
coupled mode, meaning that some (atmospheric forcing)
data are used as input, rather than as a dynamic model
state themselves. Here, three sets of forcing data were used,
i.e. the NCEP Global Data Assimilation System (GDAS),
the European Centre for Medium-Range Weather Forecasts
(ECMWF) and the North American Data Assimilation Sys-
tem (NLDAS, based on Eta model data of Mesinger, 2000,
and supplemented with observation-based precipitation and
radiation data as per Cosgrove et al. (2003). The forcing
data are eight in total: large-scale precipitation, convec-
tive precipitation, specific humidity, surface pressure, down-
ward shortwave solar radiation, downward thermal radia-
tion, air temperature, and wind velocity. The temporal and
spatial resolution of the NLDAS forcing is 1 h and 0.125◦,
while GDAS and ECMWF have a 3 h time step and a 0.25◦

spatial grid (http://ldas.gsfc.nasa.gov/gldas/GLDASforcing.
php). The combination of two models (Noah, CLM2) and
three forcing data sets created a model ensemble of six mem-
bers, of which the spread provides an indication of the range
and uncertainty of modelled soil moisture involved. The
Noah and CLM models were initialised with a soil mois-
ture profile in static gravitational equilibrium and run with
one full year (2003) of forcing data. The soil moisture profile
at the end of the year was used as the initial soil moisture
profile of the next full year run. This was repeated for the
number of times it took for the soil moisture profile of con-
secutive runs to remain (virtually) unchanged at the end of

the full year run. This soil moisture profile was subsequently
used for model initialisation. The model estimates are ob-
tained independently of the satellite soil moisture retrievals.

2.3 Satellite observations

Data sets were obtained of near-surface soil moisture re-
trievals (∼2 cm) derived from the 6.9 GHz (C-band) and
10.7 GHz (X-band) microwave signal from the AMSR-E in-
strument on board the Aqua satellite using the LPRM (Owe
et al., 2008). Whilst the LPRM initially provided retrievals
of absolute soil moisture (i.e. in the 0–0.5 (m3 m−3) range),
it currently offers a soil moisture index, which implies re-
trievals may be in excess of the 0.5 (m3 m−3) threshold. To
assess the impact of (re)scaling on the LPRM soil moisture
product, both the absolute and relative retrieval are analysed
for the year 2003. The AMSR-E footprint is an oval of diam-
eter 43× 74 km and 30× 51 km at C- and X-band, respec-
tively, defined as the size of the−3 dB (50 % gain) beam
diameter of the radio channel (Gu and England, 2007). By
default, the derived soil moisture fields are re-sampled glob-
ally to a 0.25◦ grid (∼25 km), assigning a value to a grid cell
if the centroid of the footprint falls within. It is noted that this
extends the nominal footprint area considered to a zone by up
to 37 km beyond the grid cell, in case the centroid happens to
plot close to the grid cell borderline. Further, as the−3 dB is
used as the cut-off gain, the size of the contributing area is in
fact larger than the defined footprint. The implication of this
is further discussed below.

A subset covering the state of Oklahoma, USA, was sam-
pled from the global data set. The choice for this location is
motivated by the availability of sets of ground-observed data
(Oklahoma Mesonet, Brock et al., 1995) for the period corre-
sponding with the satellite data and atmospheric forcing data
for the model simulations (i.e. 2003).

All data contaminated by precipitating clouds were re-
moved by visual inspection of the LPRM retrieved surface
temperature fields and by comparison to ground-observed
surface temperature for Oklahoma (Gouweleeuw et al.,
2007). Most of the cloud-contaminating conditions occur at
daytime in summer, when convection is strong. While this
eliminated about 1–3 % of the data set, frozen soil conditions
in winter took out the bulk of the data (over 30 %) at this time
of year.

3 Methods

First, time series of the on-ground, modelled and satellite-
derived top soil moisture estimates for the three areas were
plotted and visually inspected to examine the level of agree-
ment. Next, outliers were identified, inspected and, if justi-
fied, removed. As noted above, most of the outliers in the
satellite-derived estimates could be related to precipitating
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Table 1.RMSE (m3 m−3) of the current VUA relative soil moisture product vs. ground-observed and modelled soil moisture estimates.

CLM2 Noah

RMSE Grid/Station MESO-NET ECMWF GDAS NLDAS Mean ECMWF GDAS NLDAS Mean

Western area PUTN 0.12 0.056 0.073 0.051 0.056 0.12 0.14 0.11 0.12
WEAT 0.11 0.056 0.075 0.055 0.056 0.12 0.14 0.11 0.12
WATO 0.072 0.071 0.064 0.076 0.065 0.065 0.080 0.058 0.067
HINT 0.064 0.071 0.066 0.079 0.066 0.075 0.094 0.067 0.078

Eastern area HECT-BIXB 0.15 0.17 0.17 0.19 0.18 0.12 0.12 0.12 0.12
PORT 0.19 0.19 0.19 0.22 0.20 0.14 0.13 0.15 0.14
PORT-HASK 0.13 0.19 0.19 0.22 0.20 0.14 0.13 0.15 0.14
HASK 0.093 0.088 0.088 0.107 0.091 0.070 0.074 0.068 0.069
OKMU 0.092 0.084 0.095 0.091 0.088 0.090 0.10 0.082 0.089

South-central area BYAR-VANO 0.14 0.17 0.17 0.19 0.18 0.15 0.13 0.16 0.14

Table 2.RMSE (m3 m−3) of the UoM soil moisture product vs. ground-observed and modelled soil moisture estimates.

CLM2 Noah

RMSE Grid/Station MESO-NET ECMWF GDAS NLDAS Mean ECMWF GDAS NLDAS Mean

Western area PUTN 0.19 0.09 0.12 0.081 0.096 0.20 0.22 0.18 0.20
WEAT 0.17 0.083 0.10 0.070 0.084 0.19 0.22 0.18 0.19
WATO 0.19 0.079 0.10 0.068 0.083 0.18 0.20 0.17 0.18
HINT 0.16 0.080 0.10 0.067 0.082 0.19 0.21 0.18 0.19

Eastern area HECT-BIXB 0.14 0.12 0.13 0.10 0.12 0.18 0.18 0.17 0.18
PORT 0.14 0.14 0.14 0.12 0.13 0.20 0.20 0.18 0.20
PORT-HASK 0.21 0.14 0.14 0.12 0.13 0.20 0.20 0.19 0.20
HASK 0.27 0.14 0.14 0.12 0.13 0.20 0.20 0.18 0.20
OKMU 0.18 0.15 0.16 0.14 0.15 0.17 0.19 0.14 0.17

South-central area BYAR-VANO 0.15 0.11 0.12 0.096 0.11 0.13 0.16 0.12 0.13

cloud and soil freezing conditions. Further noise or short-
lived events were averaged out by applying a 14-day simple
mean low-pass filter to the time series plots (Fig. 2). Next,
seasonal effects were identified that could potentially cause
temporal bias in the satellite retrievals, viz.: (1) the vegetation
cycle; (2) land surface temperature; and (3) open water. This
is explored in more detail in the Discussion section. With re-
gard to (3), the effect of the open water fraction (OWF) in
the passive microwave footprint was assessed in three ways,
viz.: (a) using 1 km 16-day composite MODIS reflectance
data; (b) from an open water fraction estimate, based on
18.7 GHz H- and V-polarized AMSR-E brightness temper-
ature (Jones and Kimball, 2010), made available by the Uni-
versity of Montana (hereafter referred to as OWFUoM); and
(c) the difference between satellite-observed and modelled
brightness temperature, inverting LPRM.

The approach to map open water extent from MODIS data
computes an Open Water Index (OWI) from the Nadir-BRDF
Adjusted Reflectance (NBAR) product (MCD43B4). This
MODIS product provides a 1 km 16-day composite of land
surface reflectance, corrected for Bidirectional Reflectance
Distribution Function (BRDF) and atmospheric affects. The
OWI is computed as the difference of the Global Vegetation
Moisture Index (GVMI) and the Enhanced Vegetation Index

(EVI), if EVI < 0.2. If EVI ≥ 0.2, OWI = 0 (Guerschman et
al., 2008). Validation against higher resolution Landsat map-
ping suggests this method performs as well as or better than
other commonly used methods (Guerschman et al., 2009).
The OWFMODIS is computed as the number of 1 km pixels of
OWI > 0 in a grid cell, divided by the total number of pixels.

The third method calculates an open water fraction by
solving the following equation for OWFLPRM, which appor-
tions the overall observed satellite brightness temperature
proportionately between the open water and the land surface:

Tb sat = (1− OWFLPRM) · Tb obs/LSM

+OWFLPRM · Tb water (1)

whereTb sat is the satellite-observed brightness temperature,
Tb obs/LSMis the brightness temperature calculated from LSM
simulated or ground-observed soil moisture andTb wateris the
brightness temperature of water.

BothTb obs/LSMandTb waterare calculated by inverting the
LPRM and re-inserting retrieved LST and optical density val-
ues. To calculateTb water, the absolute value of the dielectric
constant of water (80) is inserted into the model. Thus, the
product of OWFLPRM andTb water is used to account for the
difference betweenTb satandTb obs/LSM, whereTb obs/LSMex-
ceedsTb sat.
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Fig. 2. AMSR-E derived, ground-observed and simulated soil moisture for 0.25◦ grid cells in the Western (PUTN), South-Central (BYAR-
VANO) and Eastern Oklahoma area (HECT-BIXB) (low-pass filter 14 days).

4 Results

4.1 Comparison of on-ground, modelled and
satellite-derived soil moisture

Figure 1 shows two examples of 0.25◦ gridded maps of
AMSR-E-derived absolute soil moisture using LPRM (here-
after referred to as Vrije Universiteit Amsterdam, VUA) of
Oklahoma at nighttime (descending orbit) for 2 April and
28 July 2003, together with the three areas of 4× 0.25◦ cell
grid size, within which ground-observed data are sampled.
The early spring image shows a distinct east-west gradient
(2 April), which is persistent throughout the year, albeit less
pronounced in summer, as shown for 28 July. Figure 2 il-
lustrates the dynamics of this east-west gradient for the year
2003, plotted together with AMSR-E VUA rel, the current
relative VUA retrieval product, and AMSR-E retrievals from
Jones and Kimball (2010) (hereafter referred to as Univer-
sity of Montana, UoM), ground-observed and mean mod-
elled soil moisture for the 0.25◦ grid cells in the western area
(PUTN), south-central area (BYAR-VANO) and eastern area
(HECT-BIXB). In the eastern and south-central areas, both
AMSR-E VUA abs and AMSR-E VUA rel soil moistures
are much higher than all the other estimates, most notably
in the first and last three months of the year. Unsurprisingly,
the AMSR-E VUA rel retrieval shows a larger range than
the AMSR-E VUA abs product for these areas. The seasonal
pattern, however, is virtually identical. This seems to indi-
cate that the (re)scaling of the VUA product does not signif-
icantly affect the observed pattern. The AMSR-E UoM re-
trievals show the lowest soil moisture estimated for all areas,
with the exception of the start of the year in the south-central
area. While the satellite-derived soil moisture data sets make
use of the same sensor, the UoM applies a different method to
solve the microwave radiative transfer function for land sur-
face variables, using a combination of multi-frequency po-
larizations and ratios (Jones and Kimball, 2010). Addition-
ally, it employs an open water fraction derived from higher

frequency AMSR-E data to correct for positive bias. Some
seasonality is also present in the UoM retrievals in the south-
central and eastern area, albeit less pronounced and at a lower
level than in the VUA retrievals. Tables 1 and 2 indicate
RMSE for the UoM retrievals vs. ground-observed and mod-
elled soil moisture is consistently higher than the RMSE for
the VUA product in the western area, while it is alternately
higher and lower in the other two areas. The UoM product
compares best to the CLM2 simulations, which reproduce
relatively dry time series of soil moisture with a high dy-
namic range (Fig. 2). This is explained by the shallow top soil
layer in the model adjusted to∼2 cm to match the AMSR-E
sampling depth. The Noah model structure stipulates a soil
profile with fixed depths of its 10 layers (Ek et al., 2003).
The depth of the top soil layer is fixed at 10 cm, prompting
higher average moisture content with a lower dynamic range.
The Mesonet observations, taken at 5 cm depth, mostly plot
close to the Noah simulations, although they deviate slightly
more in the eastern area. In the western area, the AMSR-E
products plot closest to the CLM2 simulation, in agreement
with the comparable sampling depth.

4.2 Independent estimation of OWF using MODIS
imagery

Figure 3 shows two RGB false colour maps (band 7, 2,
and 1) of Oklahoma depicting MODIS 16-day composite
reflectance data (MCD43B4). The 16-day composites in-
clude the dates of the daily soil moisture retrieval maps
in Fig. 1 (i.e. 22 March–6 April 2003 (upper panel) and
12–28 July 2003). Pixels of OWI> 0 are coloured blue,
representing mostly dammed lakes/reservoirs and the wider
(>1 km) stretches of streams. At a glance, open water extent
appears to be larger in March–April, albeit only marginally.

Figure 4 shows times series of OWFMODIS for the 0.25◦

grid cells in the Western, South-Central and Eastern Okla-
homa area (as labelled in Fig. 3) together with OWFUoM. As
noted earlier, the AMSR-E 6.9 GHz and 10.7 GHz footprint
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Fig. 3. RGB false colour maps (band 7, 2, and 1) of Oklahoma
of 1 km 16-day composite MODIS reflectance data (MCD43B4)
overprinted with the Open Water Index (OWI) map for 22 March–
6 April 2003 (upper panel) and 12–28 July 2003 (lower panel). Also
depicted are the three areas in the Western (PUTN), South-Central
(BYAR-VANO) and Eastern Oklahoma area (HECT-BIXB). Pixels
of OWI > 0 are coloured blue.

sizes are substantially larger than 0.25◦, so OWFMODIS is
also computed for larger grid cells centred in the 0.25◦ grid
cell. Figure 4 shows OWFMODIS remains about constant in
the western area, although levels vary slightly with grid cell
size. The Eastern area shows a marked seasonal change in
OWFMODIS, which increases in level and variation with grid
cell size up to 1.25◦. OWFUoM falls somewhere between the
0.75–1.5◦ OWFMODIS and generally reflects a correspond-
ing seasonal pattern, absent in the other two areas. Consider-
ing OWFUoM is based on the 18.7 GHz signal of 27× 16 km
footprint, one would expect a better agreement with the
smaller 0.25◦ OWFMODIS. One should realise, however, that
the OWF estimates are based on independent data and unre-
lated methods. Despite that, they show an agreement in level
and pattern, in that OWF is absent in the western and south-
central area and present and dynamic in the east. By contrast,
in the south-central area, neither MODIS nor UoM (Fig. 4,
middle panel) indicates the presence of an open water frac-
tion to account for the observed LPRM soil moisture retrieval
overestimation (Fig. 2, middle panel), with the exception of a
small increase in OWFUoM at around day 60. This may be ex-
plained by the different passive microwave frequencies, and
hence, spatial resolutions, involved. The 6.9 and 10.7 GHz
soil moisture retrieval occupies the larger footprint, an oval of

diameter 43× 74 km and 30× 51 km (and beyond), respec-
tively, and is prone to signal smearing, when re-sampled to a
0.25 degree grid, in this particular case from the East. This
is much less the case for the smaller 18.7 GHz open water
fraction footprint of 27× 16 km, which falls almost entirely
within the 0.25 degree grid.

4.3 Estimation of OWF by inversion of LPRM

Figure 5 shows OWFLPRM calculated for the grid cells shown
in Figs. 2 and 4, in case the AMSR-E VUA products exceed
the modelled or ground-observed soil moisture estimate. As
a result, it is calculated for the drier CLM2 simulations in
the western area only, reflecting an alternating pattern of dry
down and wetting up in the shallow, 2-cm model, top soil
layer. In the eastern and south-central area, the alternating
OWFLPRM pattern is set on top of a more seasonal variation
of OWFLPRM. As discussed above, the computed open wa-
ter fraction in the south-central area is presumably the re-
sult of an artefact caused by signal smearing of the relatively
large 6.9 GHz satellite footprint over a 0.25 degree grid. The
OWFUoM in the Eastern area corresponds remarkably well to
OWFLPRM, especially the fraction calculated for CLM2. In
summer, OWFLPRM (Mesonet, Noah) is lower than or out of
phase with OWFUoM. This could indicate additional bias due
to another source, e.g. dense vegetation. In the Eastern area,
however, the computed OWFLPRM indicates that a small frac-
tion (<0.05) of open water in the satellite observation foot-
print alone may cause a large positive bias in the soil mois-
ture product (>0.2 m3 m−3).

5 Discussion

The single year analysis presented here argues that the sea-
sonally varying extent of water bodies can explain most of
the anomaly between ground observations and model esti-
mates of near-surface soil moisture on the one hand, and
LPRM-based AMSR-E satellite retrievals on the other. Of the
three seasonal effects identified as potentially causing bias
in the satellite retrievals, viz.: the vegetation cycle, LST and
varying open water extent, the latter is considered the most
plausible. This is discussed in more detail below.

Most of the Oklahoma land surface cover consists of
sparse vegetation, i.e. grassland/ cropland in the west and
wooded grassland in the east. An exception is a patch of
forest in the southeast corner of Oklahoma, which is not in-
cluded in the present analysis. Although saturation of the mi-
crowave signal is significant over dense vegetation, previous
studies have shown good agreement between the microwave
vegetation signal (VOD) and independent observations, such
as the Normalised Difference Vegetation Index (NDVI), and
the derived soil moisture with shallow field measurements
in varying environments (e.g. Owe et al., 2001; De Jeu and
Owe, 2003; Draper et al., 2009). Figure 6 shows the NDVI,
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Fig. 4.Time series of the MODIS-derived Open Water Fraction for the 0.25◦ grids cells in the Western, South-Central and Eastern Oklahoma
area for increasing grid cell sizes, together with the UoM open water fraction.

Fig. 5. Time series of the Open Water Fraction calculated with the LPRM, together with the OWFUoM, for the 0.25◦ grids cells in the
Western, South-Central and Eastern Oklahoma area (low-pass filter 14 days).

together with the VUA (relative and absolute, 1 frequency)
and UoM (3 frequencies) optical vegetation indices for the
three areas. The NDVI peaks early and, again, late in the year
in the western area. This is somewhat faintly reflected in the
VUA VOD, which agrees better with the NDVI in the south-
central and eastern area, although it lacks the dynamic range.
The UoM VOD is relatively flat and comparatively low in
the south-central and eastern area. Following Parinussa et
al. (2011), the relatively high VUA VOD peak values in all
three areas (0.6–0.7) suggest a soil moisture error estimation
of 0.1–0.13 (m3 m−3) for 6.9 GHz and 0.15–0.20 (m3m−3)

for 10.7 GHz. While these estimated errors account for more
than half of the observed differences in soil moisture esti-
mates in value, the seasonal dynamic of the VOD time series
is in reverse phase, i.e. the highest soil moisture bias coin-
cides with the lowest VOD estimates. An increased VOD
value, therefore, may add to the positive (or negative) bias
in the soil moisture retrieval without fully accounting for it.

Figure 2 shows that the overestimation of satellite-derived
soil moisture estimates in the eastern and south-central area
occurs in the colder part of the year, i.e. winter/spring and
autumn/winter. The LPRM (Owe et al., 2008) provides LST
from 37 GHz brightness temperature observations, which is

used to normalise the lower-frequency brightness tempera-
ture (6.6 GHz and 10.7 GHz) for emissivity. In summer dur-
ing the daytime, the LST may well exceed the temperature
of the deeper emitting soil layer in the lower frequencies, es-
pecially in dry conditions. If uncorrected, this may result in
an underestimation of the emissivity, i.e. an overestimation
of the satellite-derived soil moisture estimate. Conversely, in
the cold season, it may lead to underestimation of the soil
moisture estimate. Hence, a LST bias would have the inverse
effect of what is observed.

Until recently, methods to correct footprints for dynamic
water body effects have not been considered feasible or cost-
effective on a routine global basis. This study argues tempo-
ral, regional variations in OWF could have a profound effect
on these soil moisture retrievals. Temporal variations in OWF
derived from 18.7 GHz AMSR-E observations (Jones and
Kimball, 2010) agree reasonably well with independently
obtained estimates, using the MODIS optical bands and
through LPRM inversion. Even better agreement is achieved
when considering that the re-sampling of 6.9/10.7 GHz foot-
print data (of 43× 74 km/30× 51 km size) into a 0.25 degree
grid has led to considerable signal smearing in the LPRM-
based soil moisture retrievals.

www.hydrol-earth-syst-sci.net/16/1635/2012/ Hydrol. Earth Syst. Sci., 16, 1635–1645, 2012



1642 B. T. Gouweleeuw et al.: Space-based passive microwave soil moisture retrievals

Fig. 6.The AMSR-E UoM and VUA VOD retrievals (low-pass filter 30 days), together with area-averaged NDVI.

Fig. 7.Time series from 2003 to (mid-) 2010 of the current VUA rel and UoM soil moisture and VOD products, together with the smoothed
UoM OWF (30-day moving median filter), for the Western (top), South-Central (middle) and Eastern (lower) Oklahoma areas.

Figure 7 shows the time series from 2003 to 2010 of
UOM, and to mid-2010 of the current VUA soil moisture and
VOD products. Although on-ground soil moisture observa-
tions and model simulations have not been analysed, the gen-
eral patterns observed for 2003 are replicated in the longer
time series. The south-central and eastern areas (two lower
panels) show a seasonal positive bias in VUA soil moisture,
which for the latter area coincides with an increase of open
water fraction most of times, a notable exception is the first
half of 2006, for which no OWFUoM data were available.
From the time series for the Eastern area (lower panel), how-
ever, it appears that an OWFUoM increase is not equally pro-
portional to a positive bias of VUA soil moisture over time all

the time. This could indicate an interaction with, or possibly
reinforcement of, soil moisture retrieval error at higher VOD.
The open water fraction calculated through LPRM inversion
for 2003, however, agrees well with the independently ob-
tained fractions, which indicates that it alone may account for
the observed soil moisture retrieval bias. Previous synthetic
studies (e.g. Davenport et al., 2008; Loew, 2008) suggest
that ignoring an open water fraction of 0.05 in the retrieval
can leads to a bias of about 0.05–0.1 (m3 m−3). The larger
bias in proportion to the open water fraction observed in the
longer time series using actual satellite observations, there-
fore, may represent an integrated error, caused by (an inter-
action of) open water, high vegetation density, etc. However,
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as mentioned earlier, the times series in Fig. 7 show VOD
(and hence the associated soil moisture retrieval error) in re-
verse phase with the observed positive soil moisture bias.

Pellarin et al. (2003), using L-band passive microwave ob-
servations, estimated that more than a third of the Earth’s ter-
restrial surface has>0.01 open water, defined in that case
as persistent open water. Open water area, however, is by
no means static and may vary for shorter or longer periods
of time through e.g. flooding, irrigation, and the seasonal
recharge and drying of dammed lakes and wetlands.

The soil moisture missions by ESA (SMOS) and NASA
(SMAP) that are currently in progress have set a target ac-
curacy of ±0.04 (m3 m−3). To achieve this, constant and
seasonally varying extent of open water within the foot-
print will need to be identified and corrected for in the re-
trieval. This study provides an indication that higher fre-
quency AMSR-E data provide sufficient spatial resolution to
correct for open water fraction contribution on a 0.25 degree
grid. On higher spatial resolutions (500 m–1 km), standard
MODIS reflectance products are suitable for further verifi-
cation. Alternatively, it has been shown that high-resolution
active radar observations are well suited for open water map-
ping (Wagner et al., 2007; Ticehurst et al., 2009).

Taken together, it would seem that strong gains in the qual-
ity and error characterisation of passive microwave soil mois-
ture retrievals can be made by a combination of assimilating
remote sensing observations of open water area and more so-
phisticated signal re-sampling approaches (e.g. Gu and Eng-
land, 2007).

6 Conclusions

Open water has a strong passive microwave signature and
therefore can produce positive biases in top soil moisture
content estimated from passive microwave remote sensing.
Seasonal variations in the fraction of open water may further
complicate the agreement and accuracy of top soil moisture
retrievals. The magnitude of this effect was investigated us-
ing top soil moisture estimates for 0.25◦ grid cells in Ok-
lahoma, derived from on-ground station observations, land
surface models, and the AMSR-E passive microwave satel-
lite instrument. Differences between the ground or model
estimates and remote sensing retrievals were compared to
dynamic estimates of open water fraction retrieved from a
global daily record based on higher frequency AMSR-E data
(Jones and Kimball, 2010), derived from MODIS (Guer-
schman et al., 2009) and calculated through LPRM inversion.
The comparison indicates that seasonally varying biases in
excess of 0.2 (m3 m−3) soil water content can be attributed
to the presence of relatively small areas (<0.05) of open wa-
ter in the (nominal) footprint, possibly in combination with
(or enhanced by) higher, but below-critical vegetation density
conditions (optical density<0.8). Given the widespread dis-
tribution of small water bodies over the Earth’s land surface

and the large satellite footprint, it is plausible that more of-
ten than not current soil moisture products have considerable
positive bias and systematic noise. It is shown that retrievals
can be improved by considering temporal observations of
open water area, but the source of the satellite signal needs to
be considered when re-sampling into spatial grid resolutions
that are smaller than the source area.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
16/1635/2012/hess-16-1635-2012-supplement.zip.
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